Periodic Points for onto Cellular Automata

نویسنده

  • MIKE BOYLE
چکیده

Let φ be a one-dimensional surjective cellular automaton map. We prove that if φ is a closing map, then the configurations which are both spatially and temporally periodic are dense. (If φ is not a closing map, then we do not know whether the temporally periodic configurations must be dense.) The results are special cases of results for shifts of finite type, and the proofs use symbolic dynamical techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strictly Temporally Periodic Points in Cellular Automata

We study the set of strictly temporally periodic points in surjective cellular automata, i.e., the set of those configurations which are temporally periodic for a given automaton but are not spatially periodic. This set turns out to be residual for equicontinuous surjective cellular automata, dense for almost equicontinuous surjective cellular automata, while it is empty for the positively expa...

متن کامل

Periodic Points and Entropies for Cellular Automata

For the class of permutive cellular automata the number of periodic points and the topological and metrical entropies are calculated.

متن کامل

Jointly Periodic Points in Cellular Automata: Computer Explorations and Conjectures

We develop a rather elaborate computer program to investigate the jointly periodic points of one-dimensional cellular automata. The experimental results and mathematical context lead to questions, conjectures and a

متن کامل

Density of periodic points, invariant measures and almost equicontinuous points of Cellular Automata

Revisiting the notion of μ-almost equicontinuous cellular automata introduced by R. Gilman, we show that the sequence of image measures of a shift ergodic measure μ by iterations of such automata converges in Cesaro mean to an invariant measure μc. If the initial measure μ is a Bernouilli measure, we prove that the Cesaro mean limit measure μc is shift mixing. Therefore we also show that for an...

متن کامل

Solution of some conjectures about topological properties of linear cellular automata

We study two dynamical properties of linear D-dimensional cellular automata over Zm namely, denseness of periodic points and topological mixing. For what concerns denseness of periodic points, we complete the work initiated in (Theoret. Comput. Sci. 174 (1997) 157, Theoret. Comput. Sci. 233 (1–2) (2000) 147, 14th Annual Symp. on Theoretical Aspects of Computer Science (STACS ’97), LNCS n. 1200,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999